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SSB’s and Type 2 Diabetes

Sugar-sweetened beverages (SSB’s)

• Drinks with added sugar

• The largest source of added sugar in
our diets today. SSB intake has
risen most dramatically in LMIC’s1

• SSB consumption linked to
increased risk of T2D, obesity, heart
disease

Q: What fraction of type 2 diabetes cases can be attributed to SSB
consumption? What if SSB consumption were entirely eliminated? What
if it were halved?

1Malik et al., Nature Reviews Endocrinology, 2022.
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The PIF and PAF
• The potential impact fraction (PIF), or the attributable fraction, is
the proportion of incidents attributable to a given risk factor

• It requires a relative risk (RR) function that depends on exposure
levels X and regression coefficients β

• Most common form RR(X ;β) = exp(Xβ)

Definition

The potential impact fraction (PIF) is defined as

PIF =
Eobs

X

[
RR

(
X ;β

)]
− Ecft

X

[
RR

(
X ;β

)]
Eobs

X

[
RR

(
X ;β

)] , (1)

where Eobs
X [RR(X ;β)] represents the expected value of the relative risk

under the observed exposure distribution and Ecft
X [RR(X ;β)] is the

expected value of the relative risk under a counterfactual distribution of
the exposure.
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The PIF and PAF

• The population attributable fraction (PAF), or the attributable
fraction for the population, is a specific case of the PIF when the
counterfactual exposure is 0 (Ecft

X [RR(X ;β)] = 1)

Definition

The population attributable fraction (PAF) is defined as

PAF = 1− 1

Eobs
X

[
RR

(
X ;β

)] , (2)

where Eobs
X [RR(X ;β)] represents the expected value of the relative risk

under the observed exposure distribution in a given population.
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Standard Approach1

1 Assume a parametric distribution for continuous exposure X (e.g.
Log normal, Weibull, Gamma)

2 Fit the parameters using method of moments estimation, matching
the mean and variance of the observed exposure data

3 Estimate the PIF from Eq. 1 or the PAF from Eq. 2 using analytic or
numerical integration

Issues with the standard approach:

1 PIF is undefined for heavy-tailed exposure distributions

2 PIF can be heavily biased if exposure distribution is misspecified

1GBD 2013 Risk Factors et al., 2015, Gortmaker et al., 2016, Veerman et al., 2016
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Undefined PIF’s?

PAF = 1− 1

Eobs
X

[
RR

(
X ;β

)]
• The problem lies on the combination of a heavy-tailed distribution
with an exponential relative risk

• A random variable X is said to have a heavy tail if the tail probabilities
P(X > t) decay more slowly than tails of any exponential distribution

lim
x→∞

ecxP(X > x) = ∞ for all positive c

• Distributions with heavy tails: Log normal, Pareto, Cauchy, Weibull
with shape parameter less than 1
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Standard Approach

Table: Relative bias percentage of PAF under different distributional assumptions
for the standard method.

Distribution assumed

True distribution True PAF Gamma Log normal Normal Weibull

Gamma(1.15, 1.29) 0.3455
Normal(1.48, 1.38) 0.3795
Weibull(1.08, 1.53) 0.3447
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Standard Approach

Table: Relative bias percentage of PAF under different distributional assumptions
for the standard method.

Distribution assumed

True distribution True PAF Gamma Log normal Normal Weibull

Gamma(1.15, 1.29) 0.3455 0 189.4 -19.6 -0.2
Normal(1.48, 1.38) 0.3795 -9.2 163.5 0 -9.3
Weibull(1.08, 1.53) 0.3447 0.2 190.1 -19.2 0
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(Kehoe) Mixture Approach

To avoid undefined PIF values, Kehoe et al. (2012) proposes:

• Truncate the assumed exposure distribution by an upper bound M

• Fit the exposure data using maximum likelihood estimation. Separate
out 0 and positive values of the exposure

PAF = 1− 1

p0RR0 +
∫M
0 RR(X ;β)f (X )dX
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Mixture Approach
PIF value now depends on truncation bound!
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We propose two nonparametric methods: empirical method and
approximate method
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Methods - Empirical Method

Let µ̂obs
n (β) = 1

n

n∑
i=1

RR
(
X i ;β

)
and µ̂cft

n (β) = 1
n

n∑
i=1

RR
(
g(X i );β

)
.

We define the empirical estimators of the PAF and PIF as:

P̂AF := 1− 1

µ̂obs
n (β̂)

, and P̂IF := 1− µ̂cft
n (β̂)

µ̂obs
n (β̂)

.

Theorem

Suppose that β̂ is a consistent and asymptotically normal estimator from
an independent study. That is,

√
m(β̂ − β) is asymptotically mean-zero

multivariate normal with covariance matrix Σβ, where m is the sample

size of the independent study estimating β. Then P̂AF and P̂IF converge
in probability to PAF and PIF , respectively, and both

√
n(P̂AF− PAF)

and
√
n(P̂IF− PIF) are asymptotically mean-zero multivariate normal.
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Methods - Approximate Method

Suppose we only had the mean X̄ = (X̄1, X̄2, . . . , X̄k) and variance
σ̂i ,j = Cov(Xi ,Xj) of the exposure. This is often what is reported in
publications, where individual-level data is not available.

We can use a second-order Taylor expansion for µ̂obs
n (β̂) to derive a point

estimate using only the mean and variance, leading to the following PAF
estimator

P̂AF = 1− 1

RR(X̄ ; β̂) + 1
2

∑
i ,j σ̂i ,j

∂2RR(X ,β̂)
∂Xi∂Xj

∣∣
X=X̄

.

Repeat for µ̂cft(β̂) for the PIF.

To derive the variance, we apply the multivariate delta method, as the PIF
and PAF are functions of three components: X̄ , σ̂i ,j , β̂
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Simulation Studies

• Define true exposure as a mixture p0 + (1− p0)f (x), where f (x) is a
known parametric distribution, truncated at M = 12.
Get true PAF value.

• For each simulation b = 1, . . . ,B, varying N:
• Generate data from true underlying exposure distribution
• Estimate the PAF and 95% confidence interval using the approximate

and empirical methods

• Report coverage and average relative bias over the B simulations

12 / 16



Simulation Studies
True dist. p0 + (1 − p0)f (x) Empirical Approximate

f (x) p0 true PAF N Rel. Bias % Coverage % Rel. Bias % Coverage %

Lognormal 0.00 0.364 100
1000

10000
0.05 0.352 100

1000
10000

0.25 0.301 100
1000

10000
0.50 0.223 100

1000
10000

0.75 0.125 100
1000

10000
Weibull 0.00 0.350 100

1000
10000

0.05 0.339 100
1000

10000
0.25 0.288 100

1000
10000

0.50 0.212 100
1000

10000
0.75 0.119 100

1000
10000
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Simulation Studies
True dist. p0 + (1 − p0)f (x) Empirical Approximate

f (x) p0 true PAF N Rel. Bias % Coverage % Rel. Bias % Coverage %

Lognormal 0.00 0.364 100 -25 81 -41 98
1000 -1 92 -15 94

10000 0 94 -11 90
0.05 0.352 100 -21 81 -39 97

1000 0 92 -15 94
10000 0 95 -12 89

0.25 0.301 100 -29 79 -29 94
1000 3 92 -15 93

10000 0 95 -14 86
0.50 0.223 100 22 77 -12 88

1000 9 91 -15 92
10000 1 95 -15 84

0.75 0.125 100 23 77 15 84
1000 17 91 -11 90

10000 14 95 -14 86
Weibull 0.00 0.350 100 -30 86 -39 99

1000 -3 94 -8 94
10000 0 95 -4 95

0.05 0.339 100 -26 86 -36 99
1000 -2 94 -8 94

10000 0 95 -5 94
0.25 0.288 100 -11 84 -25 95

1000 0 94 -8 94
10000 0 95 -6 94

0.50 0.212 100 17 83 -4 90
1000 4 94 -7 93

10000 1 95 -7 93
0.75 0.119 100 60 83 28 85

1000 10 93 -2 92
10000 1 95 -5 94
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Illustrative Example
• Q: What proportion of type 2 diabetes cases can be attributed to
sugar-sweetened beverage consumption in Mexico?

• SSB consumption data (n = 7762) from ENSANUT 20161

• Meta-analytic relative risk taken from the Mexican Teacher’s Cohort2

0.0

0.2

0.4

0.6

0 4 8 12
SSB consumption (servings/day)

de
ns

ity

Function

Gamma

Lognormal

Normal

Weibull

1Gaona-Pineda et al. 2018, 2Stern et al. 2019
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Illustrative Example

Parameters PAF (95% CI)

Standard Gamma k = 1.15, θ = 1.29 0.345

Mixture Gamma k = 1.41, θ = 0.90 0.280

Mixture Gamma (M = 12) k = 1.41, θ = 0.90 0.290

Standard Lognormal log µ = 0.082, log σ = 0.31 1

Mixture Lognormal log µ = 0.05, log σ = 0.98 1

Mixture Lognormal (M = 12) log µ = 0.05, log σ = 0.98 0.379

Standard Normal µ = 1.48, σ = 1.38 0.278

Mixture Normal µ = 1.56, σ = 1.37 0.375

Mixture Normal (M = 12) µ = 1.56, σ = 1.37 0.375

Standard Weibull k = 1.08, λ = 1.53 0.345

Mixture Weibull k = 1.20, λ = 1.66 0.339

Mixture Weibull (M = 12) k = 1.20, λ = 1.66 0.339

Empirical - 0.345 (0.224, 0.467)

Approximate - 0.325 (0.219, 0.431)

pifpaf R package available at
https://github.com/colleenchan/pifpaf
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Recap

• PIF estimation requires assuming some distribution for a continuous
exposure

• Biased when exposure distribution is misspecified and undefined when a
heavy-tailed distribution is chosen

• We propose two nonparametric methods to estimate the PIF, both of
which do not require making any distributional assumptions

• Empirical method: Requires individual-level data
• Approximate method: Requires only the mean and variance

• Conducted simulation studies of our methods

• PAF estimation of SSB consumption on type 2 diabetes incidence in
Mexico (≈ 0.33)

• Possible extensions: nonparametric Bayesian inference, robust mean
estimators for the PIF
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Thank you!

Email: colleen.chan@yale.edu
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The PIF and PAF as Causal Estimands

The PIF and PAF can interpreted as causal estimands if the following
assumptions hold:

• β is a causal parameter, i.e., the model used to estimate relative risk
adjusts for all known confounders

• β is transportable to the counterfactual population

• No effect modifiers
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Methods - Approximate Method
Consider a general function h(X ), which is twice differentiable. Let

Dh(X ) =
∂h(X )

∂X
and Hh(X ) =

∂2h(X )

∂X∂XT
.

The second-order Taylor polynomial for h(X ) is

h(X ) ≈ h(µ̂) + Dh(µ̂)(X − µ̂) +
1

2
(X − µ̂)THh(µ̂)(X − µ̂)

= h(µ̂) + Dh(µ̂)(X − µ̂) +
1

2
tr
[
(X − µ̂)(X − µ̂)THh(µ̂)

]
.

The first and second moments of X are

µX = E(X ) and ΣX = Var(X ),

and their estimates are

µ̂X =
1

n

n∑
i=1

(X i ) and Σ̂X =
1

n

n∑
i=1

(X i − µ̂X )(X i − µ̂X )T .
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Methods - Approximate Method

Applying the approximation to all subjects X 1, X 2, . . . , X n, we have

1

n

n∑
i=1

h(X i ) ≈ h(µ̂) +
1

2
tr
[
Σ̂XHh(µ̂)

]
.

Using this, we can approximate the following scalar functions,

µ̂obs
n (β̂), µ̂cft

n (β̂),
1

n

n∑
i=1

(RR(Xi ; β̂))
2,

1

n

n∑
i=1

(RR(g(Xi ); β̂))
2,

1

n

n∑
i=1

RR(Xi ; β̂)RR(g(Xi ); β̂),

and the following vector functions, entry by entry,

1

n

n∑
i=1

∇βRR(Xi ;β)
∣∣∣
β=β̂

and
1

n

n∑
i=1

∇βRR(g(Xi );β)
∣∣∣
β=β̂

.

These calculations appear in the confidence intervals for P̂AF and P̂IF.
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pifpaf R package1

1https://github.com/colleenchan/pifpaf
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