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Abstract

We present a novel algorithm which takes two causally-related
signals and separates them from their interference. This pro-
cess is an extension of the convergent cross mapping (CCM)
technique developed by Sugihara et al. in 2012. We extend
CCM to reconstruct signals while adding implementations of
ways to deterministically select optimal tuning parameters.
This algorithm is then applied to analyze experimental Hall
thruster data, from which we are able to recreate two distinct
constituent signals.

Mathematical Background

Time series representation of the Lorenz system
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The shadow manifold of X , MX:
MX = (X(t), X(t− τ ), · · · , X(t− (E − 1)τ ))
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Takens’s Theorem: MX and M are diffeomorphic, i.e., there ex-
ists a differentiable bijection between the two with a differentiable
inverse.

M

MX

Split Convergent Cross Mapping (sCCM)

Our Model: Split Convergent Cross Mapping for κ = 2
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X(t):
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1 Split X(t) into A and B and Y (t) into C and D
2 Create MA, MB, MC, MD by plotting time lags
3 Estimate D̂:

1 For each point in MB, find the nearest neighbors in MA
2 Compute weights of the nearest neighbors in MA
3 Apply weights to corresponding points in MC to get M

D̂
4 Average dimensions of M

D̂
to get D̂

Repeat similar procedure for others. For κ > 2, consider each
pair of splits together, and reconstruct each split from all
others, forming κ− 1 reconstructions, averaging to get one
reconstruction.

4 Combine all the estimations to get X̂ and Ŷ

Takens’s theorem provides an explanation for why sCCM may
decompose signals. Consider a composite system with only two
constituents, (X, Y ) = (X1, Y1) + (X2, Y2). Through sCCM, we
construct a linear mapping TM fromMY toMX. We observe that
the construction of T is influenced more by X1 and Y1, so TM
is close to a true diffeomorphism from MY1 to MX1. In practice,
if (X1, Y1) and (X2, Y2) are different enough, it is unlikely this
diffeomorphism maps MY2 to any relevant manifold. With this,
we can create a linear mapping T by composing TM with the
mappings to and from the shadow manifolds. Thus,

X̂ = TY = TY1 + TY2 = X1 + noise
X − X̂ = X − TY = X2 + noise.

Testing sCCM

Consider two causally related time series, X(t) and Y (t), formed
by the combination of n ≥ 2 distinct dynamical systems such as
the Lorenz, Rossler, and Chen systems, i.e.,

(X, Y ) = (X1, Y1) + · · · + (Xn, Yn),
where the terms (Xi, Yi) are in order of decreasing amplitude.
We apply sCCM on (X, Y ) to get the reconstructed signals X̂(t)
and Ŷ (t) which through observation approximate the dynamics
of the dominant system (X1, Y1), sharing a diffeomorphism be-
tween them. Thus, lower amplitude systems (interference) can
be isolated by computing:

Xresids(t) = X(t) − X̂(t) ≈ X2(t) + · · · +Xn(t)
Yresids(t) = Y (t) − Ŷ (t) ≈ Y2(t) + · · · + Yn(t).

To evaluate performance, the Pearson correlation between the
reconstructed signal X̂i and the true signal Xi is computed. We
first test our method on simpler chaotic systems and later apply
it to real Hall thruster data. We use the Fast Fourier Transform
as a benchmark for comparison.

Choosing Parameters

• Time Lag τ – time delay of phase space: Average Mutual
Information

• Embedding Dimension E – dimension of the reconstruction of
the shadow manifold: Cao’s Method

• Number of Nearest Neighbors – number of points used to
reconstruct each point in shadow manifold: grid search

• Number of Splits κ – number of parts to split time series:
dependent on density of time series

Results: Test Data

(Correlation = 0.74)

Applying sCCM to composite systems of two Lorenz systems
yields high correlation values (0.99 correlation, on average) be-
tween the reconstructed sCCM signal (X̂(t), Ŷ (t)) and primary
Lorenz signal (X1, Y1) for almost all amplitudes and frequencies
of interference signals tested. The above plots depict the time se-
ries of reconstructed secondary signal and true secondary signal
for a fixed frequency and amplitude and correlations between
Xresids with X2 for a composite system of two Lorenz systems
for various frequencies and amplitudes, respectively. The aver-
age correlation value for the secondary signals was 0.565 for the
amplitudes and frequencies tested.

Results: Hall Thruster Data

The following plots show the results of sCCM when reconstruct-
ing the sum of the anode current and cathode current from the
electrical signal at a ring from behind the Hall thruster, and then
normalized relative to the original signal. The two reconstruc-
tions are clearly distinct time series: the primary reconstruction
is a large amplitude and low frequency quasiperiodic signal, while
the secondary reconstruction is a small amplitude and high fre-
quency signal or noise.

Hall thruster signal (Anode + Cathode Current)

Decomposed Hall thruster Signal via sCCM

Discussion and Future Work

Empirically, sCCM works well on decomposing composite Lorenz
and Rossler systems of various frequencies and amplitudes. Ap-
plying sCCM to Hall thruster data, we find evidence that the
signals obtained from sCCM represent underlying signals present
in the system.
In practice, Hall thrusters are tested in simulated vacuum envi-
ronments although when sent into space, Hall thruster signals are
often corrupted by interfering signals; traditional methods such
as the Fourier transform typically fail to decompose these chaotic
signals. sCCM opens new pathways for improving AFRL’s test-
ing by revealing deviations between reconstructed residuals in a
simulated environment and in space. Potential avenues for fu-
ture research include investigating the optimal rotation and the
effects of principal component analysis before applying sCCM
and further exploring whether the residuals in Hall thruster data
represent noise or an underlying signal.
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