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Introduction

A fundamental assumption often made in causal inference is the stable unit treatment value

assumption (SUTVA), which implies that potential outcomes for each unit are unrelated to

the treatment status of other units. This assumption effectively rules out spillover effects,

which are often present and of direct interest in many fields where individuals interact,

such as epidemiology, education, and labor markets.

Two-stage randomized experiments are incredibly useful designs for estimating causal

effects of a given treatment in the presence of interference. Previous two-stage designs

have been proposed under complete randomization (CRE) in both stages, and simple sample

average estimators have been developed under the partial interference assumption. Under

CRE in both stages, these estimators are unbiased for average potential outcomes where

cluster neighbors’ treatments are assigned under a 2nd stage CRE. We propose average

potential outcomes, and corresponding direct and spillover effects, where cluster neighbors’

treatments are drawn under a hypothetical Bernoulli assignment. This allows researchers

to evaluate causal effects under hypothetical treatment saturation levels. We develop

Horvitz-Thompson estimators for 2nd stage saturations and hypothetical ones under a 2nd

stage CRE or Bernoulli.

Two-Stage Randomized Experiments

Closely following Hudgens and Halloran [2], we consider J > 1 groups of individuals where
for j = 1, . . . , J , nj denotes the number of individuals in group j and N =

∑J
j=1 nj be the

total number of individuals. We denote:

Zj = (Z1j, . . . , Znj,j) as the treatments that group j receives and Z−i,j denotes the nj − 1
subvector of Zj with the ith entry deleted

zj and zijas the possible values of Zj and Zij, respectively

Ω(n) as the set of vectors of all possible exposure allocations of length n

Yij(z) as the potential outcome of individual i in group j under treatment z
α as the proportion of units assigned to treatment in a group, where we consider M
saturations αm, with m = 1, . . . , M

Sj as a categorical cluster assignment indicator: Sj = m if cluster j is assigned to αm,

S = (S1, . . . , SJ), where Jm =
∑J

j=1 1(Sj = m)

Throughout, we assume partial interference, i.e., there is no between-group interference

such that Yj(Z) = Yj(Zj). Finally, we let P2ndStage(αm)(Zj = zj) be the probability of

observing a cluster treatment vector equal to zj under the second stage assignment with

probability/proportion αm.

Stage 1: Completely randomized assignment of clusters to treatment saturations. Jm

clusters are randomly assigned to each saturation αm.

Stage 2: Randomized assignment of individuals to treatment and control. For each

cluster j assigned to αm, treatment can be assigned according to either:

Bernoulli: Each unit is assigned independently to treatment with probability αm

CRE: Exactly njαm units are assigned to treatment

Average Potential Outcomes under Bernoulli Assignment

We define the average individual potential outcome under individual treatment Zij = z and

cluster neighbors’ treatments assigned under a Bernoulli assignment with probability α as

Y
Bern

ij (z, α) =
∑

zj,−i∈Ω(nj−1)

Yij(Zij = z, Zj,−i = zj,−i)
∏
k 6=i

αwkj(1 − α)1−wkj

 .

The cluster or individual-weighted potential outcome under a second-stage Bernoulli

assignment is then

Y
Bern (z, α) =

J∑
j=1

w∗
i

nj∑
i=1

Y
Bern

ij (z, αm) (1)

where w∗
j = 1

J ·nj
corresponds to the cluster-weighted estimand and w∗

j = 1
N corresponds to

the individual-weighted estimand.

Direct and Indirect Effects

The individual direct effect is defined as

DEij(α) = Yij(1, α) − Yij(0, α)
and the individual indirect (spillover) effect is defined as

IEij(α, α′; 0) = Yij(0, α) − Yij(0, α′).

The cluster and sample-weighted direct effect would then be defined as

DE(α) =
J∑

j=1
w∗

i

nj∑
i=1

DEij(α)

and the cluster and sample-weighted indirect effect would then be defined as

IE(α, α′; 0) =
J∑

j=1
w∗

i

nj∑
i=1

IEij(α, α′; 0).

Horvitz-Thompson Estimators

To estimate Eq. 1 under a saturation α = αm, with m = 1, . . . , M , assigned in the first stage,

we can use what we call the “conditional estimator”, similar to the one proposed by Basse

and Feller [1]

Ŷ
Cond

(z, α) =
J∑

j=1
w∗

j

nj∑
i=1

Y obs
ij

1(Zij = z, Sj = m)PBern(α)(Zj,−i = zj,−i)
P(Sj = m)P2ndStage(αm)(Zj = zj)

. (2)

This estimator is conditional because it only uses data from the clusters assigned to α = αm.

The following estimator is whatwe call the “unconditional estimator” because it extrapolates

information from all the clusters:

Ŷ
Uncond

(z, α) =
J∑

j=1
w∗

j

nj∑
i=1

Y obs
ij

1(Zij = z)PBern(α)(Zj,−i = zj,−i)∑M
m=1 P(Sj = m)P2ndStage(αm)(Zj = zj)

. (3)

Note that this estimator uses information across all clusters, which may make it more

efficient than the conditional estimator, depending on the two-stage design.

The unconditional estimator also allows estimation of average potential outcomes under

hypothetical treatment probabilities, i.e., α that is not equal to any αm assigned in the first

stage.

Advantages
Definition 1 of the average potential outcomes under a Bernoulli assignment has the

following advantages:

1. Allows researchers to estimate interference effects under hypothetical treatment

probabilities

2. For treatment saturation levels assigned in the first stage, we can estimate the

potential outcomes (and the resulting interference effects) using Eq. 2 or Eq. 3. We

compare the finite sample performance of these estimators in the next section.

Simulation Studies

We compare the finite sample performance of the conditional estimator (Eq. 2) and

unconditional estimator (Eq. 3) for various treatment saturation levels assigned in the first

stage.

Consider K = 100 clusters with 10 units in each. We have two treatment saturation

levels α = (α1, α2), where P(α1) = P(α2) = 0.5. The true potential outcome is gen-

erated Yi = 2 + 3zi + 2gi + zigi, where gi is the number of treated cluster neighbors

in unit i’s cluster (stratified interference). We use first-stage complete randomization

of clusters to treatment saturations α and a second-stage Bernoulli assignment. We

plot the standard deviation of the individual average potential outcome estimate of

each estimator over B = 500 simulations for the following treatment saturation pairs:

α = {(0.1, 0.9), (0.25, 0.75), (0.49, 0.51), (0.5, 0.5)}.
For treatment saturation levels that are closer to one another, e.g., α = (0.49, 0.51), we can

see that the unconditional estimator is more efficient than the conditional estimator as it is
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applying higher weights from the clusters assigned to a different saturation level. In

contrast, the conditional estimator only uses information from clusters assigned to αm. At

α = (0.5, 0.5), the standard deviation of the estimators are the same since the estimates

are the same. At treatment probabilities that are far apart, e.g., α = (0.1, 0.9), the

unconditional estimator borrows almost no information from clusters assigned a different

αm, which explains their similar variances.
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Using the same experiment data generating process as before, we allocate clusters with

treatment saturations α = (0.4, 0.6) and (0.25, 0.75). For each hypothetical α, we run
B = 300 simulations and plot the mean estimate and 95% confidence interval of the

individual potential outcomes. As expected, at the hypothetical treatment probabilities

assigned to αm, we observe smaller variances.

Discussion and FutureWork

We define potential outcomes where the individual and cluster neighbors’ treatments are

assigned under a Bernoulli and propose an estimator, which we call the “unconditional”

estimator, for two-stage randomized experiments where the second stage can be either

Bernoulli or CRE. This estimator allows researchers to estimate interference effects of

hypothetical treatment probabilities not seen in the actual experiment.

For future work, we aim to develop a closed form expression or bounds for the variance of

the conditional estimator. We will also compare our estimator from a 2nd stage Bernoulli

or CRE design.
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