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Introduction

In many real world applications, machine learning algorithms
are used for prediction in environments that do not share the
covariate distribution of the data that the algorithm was trained
on. When this is the case, it is important for the algorithm to
be robust to the distributional shift of the covariates to avoid
harmful results down the line.
For example, the Epic Sepsis Model, a proprietary sepsis pre-
diction model, achieved good prediction accuracy on the three
hospitals that it was trained on (Wong et al. 2021). However,
the model had failed to predict sepsis in the majority of cases
on the hundreds on hospitals that it was later deployed on. This
was due to a shift in the data distribution of the hospitals, which
had different protocols and equipment and served different pa-
tient populations than the hospitals in the training sample.

How models are evaluated in papers

How models are deployed

Background

In the standard decision tree algorithm, prediction is done by
going down the tree structure and giving the mean outcome of the
leaves. The overall prediction is then a simple weighted average
of the training observations. This can lead to overfitting because
the same data was used for tree partitioning and for prediction.
A tree is considered honest if it does not use the same information
for selecting the model structure as for estimation given a model
structure (Biau, 2010). In an honest tree, the data is split into
two disjoint sets: a splitting set I to determine the tree structure
and an averaging set J to estimate the mean values within each
leaf.

Notation

We observe the tuple D = (Y, S, Z, X) where we denote:
• Y outcome of interest
• S ∈ S = {1, . . . , K} group number
• Z ∈ {0, 1} treatment
• X ∈ X vector of covariates.
For treatment effect estimation, we also assume that a separate
RCT was conducted on each group. The estimand of interest is
the group-specific conditional average treatment effect (CATE):

τs(xi) = E[Y (1) − Y (0) | X = xi, S = s].
While we can directly estimate a site-specific CATE using only
data from a given site, we want to leverage data from the other
sites for a more efficient CATE estimate.

Methods

We propose a novel sample splitting procedure during training
in order to induce robustness to distribution shifts at prediction
time. If we expect a distribution shift with respect to a certain
group later on, we train each tree in the forest so that the
observations in that group are left out during splitting and
averaging. B trees are grown for each group for a total of K · B
trees in the forest.

Algorithm 1 Honest Random Forest with Groups
1: Define D−k as the subset of the data D excluding the kth

group.
2: for k = 1 to K do
3: for b = 1 to B do
4: Randomly split D−k into two disjoint sets I and J
5: Grow a tree via recursive partitioning using the I-sample
6: Estimate leafwise responses using only the J -sample obser-

vations
7: Optional (double tree): Repeat and switch the roles of I

and J and average over the two predictions.
8: end for
9: end for

We also train the forest with out-of-bag (OOB) honesty, which
uses the OOB observations as the averaging set for each tree.
For prediction for an in-sample observation, we aggregate only
over the trees for which that observation’s respective group is
left out. For prediction out-of-sample, all trees are used. These
methods are implemented in the Rforestry R package,
available on CRAN.

Heterogeneous Treatment Effect
Estimation

Assumptions:
1 Consistency of potential outcomes: If Zi = z, then Yi(z) = Yi

2 Unconfoundedness over Z:
Y (0), Y (1) ⊥ Z | X, S = s for all s ∈ S

3 Positivity of treatment assignment:
0 < P (Z = 1 | X = x, S = s) < 1 for all x ∈ X , s ∈ S

4 Treatment effect unconfoundedness over S:
Y (1) − Y (0) ⊥ S = s | X for all s ∈ S

5 Positivity of group participation:
0 < P (S = s | X = x) < 1 for all x ∈ X , s ∈ S

Under Assumptions 1-5, the CATE in a target group s can be
identified using the following functional of the observed data dis-
tribution:

τ (xi) = E[Y | X = xi, Z = 1, S ∈ S]
− E[Y | X = xi, Z = 0, S ∈ S]. (1)

Proof:
τ (xi)
= E[Y | X = xi, Z = 1, S ∈ S] − E[Y | X = xi, Z = 0, S ∈ S]
= E[Y (1) | X = xi, Z = 1, S ∈ S]

− E[Y (0) | X = xi, Z = 0, S ∈ S] by Asm. 1
= E[Y (1) | X = xi, S ∈ S]

− E[Y (0) | X = xi, S ∈ S] by Asm. 2, 3
= E[Y (1) | X = xi, S = s]

− E[Y (0) | X = xi, S = s] by Asm. 4, 5
= E[Y (1) − Y (0) | X = xi, S = s] by linearity of expectation.

□

Simulation Studies

Monte Carlo simulations are conducted to assess the proposed
method. We assume there are K = 5 sites, each with sample
size 300. For each simulation, we simulate features Xi ∈ R5

from a multivariate normal N(0, I). The outcome model is
Y = 1

2x1 + ∑4
d=2 xd + 5(x1 − 3) · Uk, where Uk ∼ Unif(0, 1), which

represents the site-level heterogeneity; Y is also then scaled to
have mean 0 and standard deviation 1 for stability. These sim-
ulation settings are motivated by designs in Tan, Chang, and
Tang (2021). Without loss of generality, we hold out site 1 to be
the test site.
We evaluate the MSE on the test set with other tree-based
machine learning methods: Bayesian additive regression trees
(BART); random forest (RF); random forest with groups and
OOB honesty (RFGOOB); XGBoost (XGB). To tune parame-
ters, we use the OOB set for validation for RFGOOB. For the
remaining methods, we use 5-fold cross-validation. We report
the mean MSE on the test set and the mean difference between
the out-of-sample (OOS) MSE (i.e., the error on the validation
set) and test MSE across the 250 simulations conducted.

Method Test MSE Test MSE − OOS MSE

BART 1.669 0.382
RF 0.982 0.385

RFGOOB 0.964 -0.038
XGB 0.967 0.393

RFGOOB achieves the lowest MSE on the test set and the small-
est difference between the OOS error and test error. RFGOOB
is also the only method that provides a conservative OOS error
estimate.

Application

We apply our method on a large-scale field experiment in which a
nonpartisan campaign randomly sent mailers to encourage people
to vote in the 2014 general election across 17 states (Gerber et al.
2017). The states are heterogeneous with respect to each state’s
population. We hold out each state and estimate its CATE by
estimating each term in Equation 1 using RF and RFGOOB,
setting the group option to the individuals’ state and weighting
the trees in each state proportionate to the sample size. The
features used are age, sex, race, marital status, and the propor-
tion of eligible general elections that an individual voted in since
2006. We report the estimated CATE’s for each state below.
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The most unbiased model for the CATE for state s is the local
model, i.e., one that uses only data from state s. Assuming the
local model using the T-learner with random forests is the true
model (Künzel et. al. 2019), we find the RFGOOB estimates
achieve lower bias and a lower MSE than the RF estimates.

Discussion

Real world shifts are ubiquitous in deployments, whose environ-
ments are often different than the ones on which they are trained.
By training a random forest excluding a pre-specified group for
which we might expect a distribution shift later on, our proposed
method produces predictions that are more robust than those of
the standard random forest. Given that the test set shares a sim-
ilar covariate distribution to those of the groups during training,
we also expect the out-of-sample error to be an unbiased esti-
mate of the test set error. We note that for within-sample pre-
diction, our method produces less efficient estimates than those
of the standard random forest since less data is used to train the
forest. Nonetheless, our method can be especially useful for het-
erogeneous treatment effect estimation, where researchers often
want to transport causal inferences learned from multiple RCT’s
to a different population of interest. Future research includes
extending the groups option setting to other machine learning
algorithms, such as gradient boosting.
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